corrected values + bme

This commit is contained in:
GrafZ3pp3lin 2021-04-26 18:36:14 +02:00
parent 69895ad824
commit cd756e5994
6 changed files with 151 additions and 389 deletions

View file

@ -1,266 +0,0 @@
//
// FILE: dht.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.1.33
// PURPOSE: DHT Temperature & Humidity Sensor library for Arduino, AVR optimized
// URL: https://github.com/RobTillaart/DHTlib
// http://arduino.cc/playground/Main/DHTLib
//
// HISTORY:
// 0.1.33 2021-02-16 fix #6 T-GO signal in handshake. (needed for long wires)
// 0.1.32 2021-02-01 fix negative temperature DHT22 again (code from DHTNew)
// 0.1.31 2020-12-15 fix negative temperature DHT22 (code from DHTNew)
// 0.1.30 2020-06-30 own repo;
// 0.1.29 2018-09-02 fix negative temperature DHT12 - issue #111
// 0.1.28 2018-04-03 refactor
// 0.1.27 2018-03-26 added _disableIRQ flag
// 0.1.26 2017-12-12 explicit support for AM23XX series and DHT12
// 0.1.25 2017-09-20 FIX https://github.com/RobTillaart/Arduino/issues/80
// 0.1.24 2017-07-27 FIX https://github.com/RobTillaart/Arduino/issues/33 double -> float
// 0.1.23 2017-07-24 FIX https://github.com/RobTillaart/Arduino/issues/31
// 0.1.22 undo delayMicroseconds() for wakeups larger than 8
// 0.1.21 replace delay with delayMicroseconds() + small fix
// 0.1.20 Reduce footprint by using uint8_t as error codes. (thanks to chaveiro)
// 0.1.19 masking error for DHT11 - FIXED (thanks Richard for noticing)
// 0.1.18 version 1.16/17 broke the DHT11 - FIXED
// 0.1.17 replaced micros() with adaptive loopcount
// removed DHTLIB_INVALID_VALUE
// added DHTLIB_ERROR_CONNECT
// added DHTLIB_ERROR_ACK_L DHTLIB_ERROR_ACK_H
// 0.1.16 masking unused bits (less errors); refactored bits[]
// 0.1.15 reduced # micros calls 2->1 in inner loop.
// 0.1.14 replace digital read with faster (~3x) code => more robust low MHz machines.
//
// 0.1.13 fix negative temperature
// 0.1.12 support DHT33 and DHT44 initial version
// 0.1.11 renamed DHTLIB_TIMEOUT
// 0.1.10 optimized faster WAKEUP + TIMEOUT
// 0.1.09 optimize size: timeout check + use of mask
// 0.1.08 added formula for timeout based upon clockspeed
// 0.1.07 added support for DHT21
// 0.1.06 minimize footprint (2012-12-27)
// 0.1.05 fixed negative temperature bug (thanks to Roseman)
// 0.1.04 improved readability of code using DHTLIB_OK in code
// 0.1.03 added error values for temp and humidity when read failed
// 0.1.02 added error codes
// 0.1.01 added support for Arduino 1.0, fixed typos (31/12/2011)
// 0.1.00 by Rob Tillaart (01/04/2011)
//
// inspired by DHT11 library
#include "dht.h"
/////////////////////////////////////////////////////
//
// PUBLIC
//
int8_t dht::read11(uint8_t pin)
{
// READ VALUES
if (_disableIRQ) noInterrupts();
int8_t result = _readSensor(pin, DHTLIB_DHT11_WAKEUP, DHTLIB_DHT11_LEADING_ZEROS);
if (_disableIRQ) interrupts();
// these bits are always zero, masking them reduces errors.
bits[0] &= 0x7F;
bits[2] &= 0x7F;
// CONVERT AND STORE
humidity = bits[0]; // bits[1] == 0;
temperature = bits[2]; // bits[3] == 0;
// TEST CHECKSUM
uint8_t sum = bits[0] + bits[1] + bits[2] + bits[3];
if (bits[4] != sum)
{
return DHTLIB_ERROR_CHECKSUM;
}
return result;
}
int8_t dht::read12(uint8_t pin)
{
// READ VALUES
if (_disableIRQ) noInterrupts();
int8_t result = _readSensor(pin, DHTLIB_DHT11_WAKEUP, DHTLIB_DHT11_LEADING_ZEROS);
if (_disableIRQ) interrupts();
// CONVERT AND STORE
humidity = bits[0] + bits[1] * 0.1;
temperature = bits[2] + (bits[3] & 0x7F) * 0.1;
if (bits[3] & 0x80) // negative temperature
{
temperature = -temperature;
}
// TEST CHECKSUM
uint8_t sum = bits[0] + bits[1] + bits[2] + bits[3];
if (bits[4] != sum)
{
return DHTLIB_ERROR_CHECKSUM;
}
return result;
}
int8_t dht::read(uint8_t pin)
{
// READ VALUES
if (_disableIRQ) noInterrupts();
int8_t result = _readSensor(pin, DHTLIB_DHT_WAKEUP, DHTLIB_DHT_LEADING_ZEROS);
if (_disableIRQ) interrupts();
// these bits are always zero, masking them reduces errors.
bits[0] &= 0x03;
bits[2] &= 0x83;
// CONVERT AND STORE
humidity = (bits[0] * 256 + bits[1]) * 0.1;
int16_t t = (bits[2] * 256 + bits[3]);
temperature = t * 0.1;
// HEXDUMP DEBUG
/*
Serial.println();
// CHECKSUM
if (_bits[4] < 0x10) Serial.print(0);
Serial.print(_bits[4], HEX);
Serial.print(" ");
// TEMPERATURE
if (_bits[2] < 0x10) Serial.print(0);
Serial.print(_bits[2], HEX);
if (_bits[3] < 0x10) Serial.print(0);
Serial.print(_bits[3], HEX);
Serial.print(" ");
Serial.print(temperature, 1);
Serial.print(" ");
// HUMIDITY
if (_bits[0] < 0x10) Serial.print(0);
Serial.print(_bits[0], HEX);
if (_bits[1] < 0x10) Serial.print(0);
Serial.print(_bits[1], HEX);
Serial.print(" ");
Serial.print(humidity, 1);
*/
// TEST CHECKSUM
uint8_t sum = bits[0] + bits[1] + bits[2] + bits[3];
if (bits[4] != sum)
{
return DHTLIB_ERROR_CHECKSUM;
}
return result;
}
/////////////////////////////////////////////////////
//
// PRIVATE
//
int8_t dht::_readSensor(uint8_t pin, uint8_t wakeupDelay, uint8_t leadingZeroBits)
{
// INIT BUFFERVAR TO RECEIVE DATA
uint8_t mask = 128;
uint8_t idx = 0;
uint8_t data = 0;
uint8_t state = LOW;
uint8_t pstate = LOW;
uint16_t zeroLoop = DHTLIB_TIMEOUT;
uint16_t delta = 0;
leadingZeroBits = 40 - leadingZeroBits; // reverse counting...
// replace digitalRead() with Direct Port Reads.
// reduces footprint ~100 bytes => portability issue?
// direct port read is about 3x faster
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *PIR = portInputRegister(port);
// REQUEST SAMPLE
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW); // T-be
if (wakeupDelay > 8) delay(wakeupDelay);
else delayMicroseconds(wakeupDelay * 1000UL);
digitalWrite(pin, HIGH); // T-go
pinMode(pin, INPUT);
uint16_t loopCount = DHTLIB_TIMEOUT * 2; // 200uSec max
// while(digitalRead(pin) == HIGH)
while ((*PIR & bit) != LOW )
{
if (--loopCount == 0)
{
return DHTLIB_ERROR_CONNECT;
}
}
// GET ACKNOWLEDGE or TIMEOUT
loopCount = DHTLIB_TIMEOUT;
// while(digitalRead(pin) == LOW)
while ((*PIR & bit) == LOW ) // T-rel
{
if (--loopCount == 0)
{
return DHTLIB_ERROR_ACK_L;
}
}
loopCount = DHTLIB_TIMEOUT;
// while(digitalRead(pin) == HIGH)
while ((*PIR & bit) != LOW ) // T-reh
{
if (--loopCount == 0)
{
return DHTLIB_ERROR_ACK_H;
}
}
loopCount = DHTLIB_TIMEOUT;
// READ THE OUTPUT - 40 BITS => 5 BYTES
for (uint8_t i = 40; i != 0; )
{
// WAIT FOR FALLING EDGE
state = (*PIR & bit);
if (state == LOW && pstate != LOW)
{
if (i > leadingZeroBits) // DHT22 first 6 bits are all zero !! DHT11 only 1
{
zeroLoop = min(zeroLoop, loopCount);
delta = (DHTLIB_TIMEOUT - zeroLoop)/4;
}
else if ( loopCount <= (zeroLoop - delta) ) // long -> one
{
data |= mask;
}
mask >>= 1;
if (mask == 0) // next byte
{
mask = 128;
bits[idx] = data;
idx++;
data = 0;
}
// next bit
--i;
// reset timeout flag
loopCount = DHTLIB_TIMEOUT;
}
pstate = state;
// Check timeout
if (--loopCount == 0)
{
return DHTLIB_ERROR_TIMEOUT;
}
}
// pinMode(pin, OUTPUT);
// digitalWrite(pin, HIGH);
return DHTLIB_OK;
}
//
// END OF FILE
//

View file

@ -1,91 +0,0 @@
//
// FILE: dht.h
// AUTHOR: Rob Tillaart
// VERSION: 0.1.33
// PURPOSE: DHT Temperature & Humidity Sensor library for Arduino. AVR optimized
// URL: https://github.com/RobTillaart/DHTlib
// http://arduino.cc/playground/Main/DHTLib
//
// HISTORY:
// see dht.cpp file
//
#ifndef dht_h
#define dht_h
#if ARDUINO < 100
#include <WProgram.h>
#include <pins_arduino.h> // fix for broken pre 1.0 version - TODO TEST
#else
#include <Arduino.h>
#endif
#define DHT_LIB_VERSION (F("0.1.33"))
#define DHTLIB_OK 0
#define DHTLIB_ERROR_CHECKSUM -1
#define DHTLIB_ERROR_TIMEOUT -2
#define DHTLIB_ERROR_CONNECT -3
#define DHTLIB_ERROR_ACK_L -4
#define DHTLIB_ERROR_ACK_H -5
#define DHTLIB_DHT11_WAKEUP 18
#define DHTLIB_DHT_WAKEUP 1
#define DHTLIB_DHT11_LEADING_ZEROS 1
#define DHTLIB_DHT_LEADING_ZEROS 6
// max timeout is 100 usec.
// For a 16 Mhz proc 100 usec is 1600 clock cycles
// loops using DHTLIB_TIMEOUT use at least 4 clock cycli
// so 100 us takes max 400 loops
// so by dividing F_CPU by 40000 we "fail" as fast as possible
#ifndef F_CPU
#define DHTLIB_TIMEOUT 1000 // ahould be approx. clock/40000
#else
#define DHTLIB_TIMEOUT (F_CPU/40000)
#endif
class dht
{
public:
dht() { _disableIRQ = false; };
// return values:
// DHTLIB_OK
// DHTLIB_ERROR_CHECKSUM
// DHTLIB_ERROR_TIMEOUT
// DHTLIB_ERROR_CONNECT
// DHTLIB_ERROR_ACK_L
// DHTLIB_ERROR_ACK_H
int8_t read11(uint8_t pin);
int8_t read(uint8_t pin);
int8_t read12(uint8_t pin);
inline int8_t read21(uint8_t pin) { return read(pin); };
inline int8_t read22(uint8_t pin) { return read(pin); };
inline int8_t read33(uint8_t pin) { return read(pin); };
inline int8_t read44(uint8_t pin) { return read(pin); };
inline int8_t read2301(uint8_t pin) { return read(pin); };
inline int8_t read2302(uint8_t pin) { return read(pin); };
inline int8_t read2303(uint8_t pin) { return read(pin); };
inline int8_t read2320(uint8_t pin) { return read(pin); };
inline int8_t read2322(uint8_t pin) { return read(pin); };
bool getDisableIRQ() { return _disableIRQ; };
void setDisableIRQ(bool b ) { _disableIRQ = b; };
float humidity;
float temperature;
private:
uint8_t bits[5]; // buffer to receive data
int8_t _readSensor(uint8_t pin, uint8_t wakeupDelay, uint8_t leadingZeroBits);
bool _disableIRQ;
};
#endif
//
// END OF FILE
//

View file

@ -9,6 +9,10 @@ double MQ135::getVoltage() {
return (double)analogRead(pin) * VStep;
}
double MQ135::getCorrectionFactor(float temparature, float humidity) {
return (CorrA * pow(temparature, 3) + CorrB * pow(temparature, 2) - CorrC * temparature + CorrD - (CorrE * humidity - CorrE * 33));
}
double MQ135::getResistance() {
double voltage = getVoltage();
double rs = ((VIn * RL) / voltage) - RL;
@ -18,6 +22,10 @@ double MQ135::getResistance() {
return rs;
}
double MQ135::getCorrectedResistance(float temparature, float humidity) {
return getResistance() / getCorrectionFactor(temparature, humidity);
}
double MQ135::getPPM(float a, float b) {
double ratio = getResistance() / R0;
double ppm = a * pow(ratio, b);
@ -27,6 +35,15 @@ double MQ135::getPPM(float a, float b) {
return ppm;
}
double MQ135::getCorrectedPPM(float a, float b, float temparature, float humidity) {
double ratio = getCorrectedResistance(temparature, humidity) / R0;
double ppm = a * pow(ratio, b);
if (ppm < 0) {
ppm = 0;
}
return ppm;
}
double MQ135::getPPMLinear(float a, float b) {
double ratio = getResistance() / R0;
double ppm_log = (log10(ratio) - b) / a;
@ -41,32 +58,61 @@ double MQ135::getAcetona() {
return getPPM(34.668, -3.369);
}
double MQ135::getCorrectedAcetona(float temparature, float humidity) {
return getCorrectedPPM(34.668, -3.369, temparature, humidity);
}
double MQ135::getAlcohol() {
return getPPM(77.255, -3.18);
}
double MQ135::getCorrectedAlcohol(float temparature, float humidity) {
return getCorrectedPPM(77.255, -3.18, temparature, humidity);
}
double MQ135::getCO2() {
// return getPPMLinear(-0.3525, 0.7142) + ATMOCO2;
return getPPM(110.47, -2.862) + ATMOCO2;
}
double MQ135::getCorrectedCO2(float temparature, float humidity) {
return getCorrectedPPM(110.47, -2.862, temparature, humidity) + ATMOCO2;
}
double MQ135::getCO() {
return getPPM(605.18, -3.937);
}
double MQ135::getCorrectedCO(float temparature, float humidity) {
return getCorrectedPPM(605.18, -3.937, temparature, humidity);
}
double MQ135::getNH4() {
return getPPM(102.2, -2.473);
}
double MQ135::getCorrectedNH4(float temparature, float humidity) {
return getCorrectedPPM(102.2, -2.473, temparature, humidity);
}
double MQ135::getTolueno() {
return getPPM(44.947, -3.445);
}
double MQ135::getCorrectedTolueno(float temparature, float humidity) {
return getCorrectedPPM(44.947, -3.445, temparature, humidity);
}
float MQ135::getR0() {
double r0 = getResistance() / 3.6;
return r0;
}
float MQ135::getCorrectedR0(float temparature, float humidity) {
double r0 = getCorrectedResistance(temparature, humidity) / 3.6;
return r0;
}
double MQ135::getR0ByCO2Level(float ppm) {
if (ppm > ATMOCO2) {
ppm -= ATMOCO2;
@ -78,6 +124,17 @@ double MQ135::getR0ByCO2Level(float ppm) {
return pow(10, tmp);
}
double MQ135::getCorrectedR0ByCO2Level(float ppm, float temparature, float humidity) {
if (ppm > ATMOCO2) {
ppm -= ATMOCO2;
}
else {
return NAN;
}
double tmp = -(log10(ppm / 110.47) / -2.862) + log10(getCorrectedResistance(temparature, humidity));
return pow(10, tmp);
}
void MQ135::setR0(float r0) {
R0 = r0;
}

View file

@ -1,5 +1,5 @@
#ifndef MQ135New_H
#define MQ135New_H
#ifndef MQ135_H
#define MQ135_H
#include "Arduino.h"
@ -16,6 +16,13 @@
/// CO2 Level in Atmosphere
#define ATMOCO2 397.13
//Correction Values
#define CorrA -0.000002469136
#define CorrB 0.00048148148
#define CorrC 0.0274074074
#define CorrD 1.37530864197
#define CorrE 0.0019230769
/// Helper to calculate Voltage from Input
/// Voltage = input * Vin / (Resolution - 1)
const double VStep = (double)VIn / (Resolution - 1);
@ -33,34 +40,48 @@ class MQ135 {
/// Get R0 in default conditions for calibration purposes.
/// Assume CO2 Level is the default Atmospheric Level (~400ppm)
float getR0();
float getCorrectedR0(float temparature, float humidity);
/// Get R0 in custom conditions for calibration purposes.
/// Can be used, if you know the current CO2 Level.
double getR0ByCO2Level(float ppm);
double getCorrectedR0ByCO2Level(float ppm, float temparature, float humidity);
/// Set R0 Value for calibration.
void setR0(float r0);
/// Gets the resolved sensor voltage
double getVoltage();
/// Calculate Correction Factor depending on temparature and humidity
double getCorrectionFactor(float temparature, float humidity);
/// Calculates the Resistance of the Sensor
double getResistance();
double getCorrectedResistance(float temparature, float humidity);
/// Calculates ppm on a exponential curve
/// (Different Gases have different curves)
double getPPM(float a, float b);
double getCorrectedPPM(float a, float b, float temparature, float humidity);
/// Calculates ppm on a linear curve
/// (Different Gases have different curves)
double getPPMLinear(float a, float b);
/// Gets ppm of Acetona in Air (C3H6O)
double getAcetona();
double getCorrectedAcetona(float temparature, float humidity);
/// Gets ppm of Alcohol in Air
double getAlcohol();
double getCorrectedAlcohol(float temparature, float humidity);
/// Gets ppm of CO in Air
double getCO();
double getCorrectedCO(float temparature, float humidit);
/// Gets ppm of CO2 in Air
double getCO2();
double getCorrectedCO2(float temparature, float humidit);
/// Gets ppm of NH4 in Air
double getNH4();
double getCorrectedNH4(float temparature, float humidit);
/// Gets ppm of Tolueno in Air (CH3)
double getTolueno();
double getCorrectedTolueno(float temparature, float humidit);
};
#endif

View file

@ -8,10 +8,10 @@
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:mega]
[env:arduino]
platform = atmelavr
board = megaatmega2560
board = nanoatmega328new
framework = arduino
; lib_deps =
; adafruit/Adafruit BME280 Library @ ^2.1.2
lib_deps =
adafruit/Adafruit BME280 Library @ ^2.1.2
; miguel5612/MQUnifiedsensor @ ^2.0.1

View file

@ -1,14 +1,17 @@
#include <Arduino.h>
#include <MQ135.h>
#include <Adafruit_BME280.h>
#define PIN_MQ135 A0
#define PIN_LED_GREEN DD2
#define PIN_LED_YELLOW DD3
#define PIN_LED_RED DD4
#define PIN_NOISE DD5
#define PIN_MQ135 A7
#define PIN_NOISE 2
#define PIN_LED_GREEN 3
#define PIN_LED_GREEN2 4
#define PIN_LED_YELLOW 5
#define PIN_LED_YELLOW2 6
#define PIN_LED_RED 7
#define PIN_LED_RED2 8
#define MEASURE_DELAY 1000
#define NOISE_DELAY 100
void printValues();
const int maxCount = 10;
int count = 0;
@ -18,47 +21,85 @@ bool noiseActive = false;
float ppm;
MQ135 co2_sensor(PIN_MQ135);
Adafruit_BME280 bme;
void setup() {
pinMode(PIN_LED_GREEN, OUTPUT);
pinMode(PIN_LED_GREEN2, OUTPUT);
pinMode(PIN_LED_YELLOW, OUTPUT);
pinMode(PIN_LED_YELLOW2, OUTPUT);
pinMode(PIN_LED_RED, OUTPUT);
pinMode(PIN_LED_RED2, OUTPUT);
pinMode(PIN_NOISE, OUTPUT);
Serial.begin(9600);
co2_sensor.setR0(100);
}
co2_sensor.setR0(300);
void printValues(float ppm, float temp, float humidity);
if (!bme.begin(0x76)) {
Serial.println(F("Could not find a valid BME280 sensor, check wiring!"));
}
}
void loop() {
if (count >= maxCount || count < 0) {
ppm = co2_sensor.getCO2();
float temp = bme.readTemperature();
float humidity = bme.readHumidity();
ppm = co2_sensor.getCorrectedCO2(temp, humidity);
count = 0;
noiseActive = false;
digitalWrite(PIN_LED_GREEN, 0);
digitalWrite(PIN_LED_GREEN2, 0);
digitalWrite(PIN_LED_YELLOW, 0);
digitalWrite(PIN_LED_YELLOW2, 0);
digitalWrite(PIN_LED_RED, 0);
digitalWrite(PIN_LED_RED2, 0);
if (ppm < 1000) {
noiseActive = false;
digitalWrite(PIN_LED_GREEN, 1);
digitalWrite(PIN_LED_YELLOW, 0);
digitalWrite(PIN_LED_RED, 0);
if (ppm > 750) {
digitalWrite(PIN_LED_GREEN2, 1);
}
}
else if (ppm <= 2000) {
noiseActive = false;
digitalWrite(PIN_LED_GREEN, 0);
if (ppm > 1000 && ppm <= 2000) {
digitalWrite(PIN_LED_YELLOW, 1);
digitalWrite(PIN_LED_RED, 0);
if (ppm > 1500) {
digitalWrite(PIN_LED_YELLOW2, 1);
}
}
else {
noiseActive = true;
digitalWrite(PIN_LED_GREEN, 0);
digitalWrite(PIN_LED_YELLOW, 0);
if (ppm > 2000) {
digitalWrite(PIN_LED_RED, 1);
if (ppm > 2500) {
noiseActive = true;
digitalWrite(PIN_LED_RED2, 1);
}
}
printValues();
}
if (noiseActive) {
noise = !noise;
digitalWrite(PIN_NOISE, noise);
// digitalWrite(PIN_NOISE, noise);
}
else {
digitalWrite(PIN_NOISE, 0);
// digitalWrite(PIN_NOISE, 0);
}
delay(NOISE_DELAY);
delay(100);
count++;
}
void printValues() {
float temp = bme.readTemperature();
float humidity = bme.readHumidity();
float ppm = co2_sensor.getCO2();
float cppm = co2_sensor.getCorrectedCO2(temp, humidity);
Serial.print("ppm: ");
Serial.println(ppm);
Serial.print("Temperature: ");
Serial.println(temp);
Serial.print("Humidity: ");
Serial.println(humidity);
Serial.print("corrected ppm: ");
Serial.println(cppm);
}