This commit is contained in:
Luca Borsari 2020-12-12 17:31:36 +01:00
parent 60294709c7
commit a6215ac161
18 changed files with 0 additions and 3236 deletions

View file

@ -1,74 +0,0 @@
#include "SerialCommand.h"
/*
*
*/
SerialCommand::SerialCommand() {
_initialized = false;
}
/*
*
*/
SerialCommand::SerialCommand(char *buf, int blen, char eoc, Stream* stream) {
init(buf, blen, eoc, stream);
}
/*
*
*/
void SerialCommand::init(char *buf, int blen, char eoc, Stream* stream) {
if(_initialized) return;
_stream = stream == NULL ? &Serial : stream;
_buf = buf;
_bufLen = blen;
_bufIdx = 0;
_eoc = eoc;
_initialized = true;
}
/*
*
*/
int SerialCommand::getCommand() {
if( !_initialized) return(-1);
while (_stream->available()) {
if(_bufIdx < _bufLen - 2) {
char data = _stream->read();
if(data == _eoc) {
int cmsSize=_bufIdx;
_buf[_bufIdx++] = '\0';
_bufIdx=0;
return(cmsSize);
} else {
_buf[_bufIdx++] = data;
}
} else {
// buffer full
// re4set and retunn error
_buf[_bufIdx++] = '\0';
_bufIdx=0;
return(-2);
}
}
return(0);
}
void SerialCommand::sendCommand(char* str) {
// get command length
int dlen=0;
// for(; dlen<_bufLen; dlen++ ) { // limit transmitted command length to received command buffer
for(; dlen<80; dlen++ ) { // limit transmitted command length to received command buffer
if(*(str+dlen) == _eoc ){
dlen++; // send EOC
break;
}
}
_stream->write(str, dlen);
return;
}

View file

@ -1,29 +0,0 @@
#ifndef SerialCommand_h
#define SerialCommand_h
#include <Arduino.h>
class SerialCommand {
public:
SerialCommand();
SerialCommand(char *buf, int bufLen, char eoc, Stream* stream);
void init(char *buf, int bufLen, char eoc, Stream* stream);
int getCommand(void);
void sendCommand(char *);
int overflow;
protected:
Stream* _stream;
char *_buf;
int _bufIdx;
int _bufLen;
char _eoc; // EndOfCommand char
bool _initialized;
};
#endif

View file

@ -1,36 +0,0 @@
#include "SoftTimer.h"
SoftTimer::SoftTimer(unsigned long tout) {
this->set(tout);
}
SoftTimer::SoftTimer() {
}
/*
*
*/
void SoftTimer::set(unsigned long tout) {
this->timeout=tout;
}
void SoftTimer::start() {
this->startTime=millis();
}
void SoftTimer::start(unsigned long tout) {
this->set(tout);
this->start();
}
/*
*
*/
boolean SoftTimer::elapsed(){
if((millis() - this->startTime) > this->timeout) {
return(true);
}
return(false);
}

View file

@ -1,23 +0,0 @@
#ifndef SoftTimer_h
#define SoftTimer_h
#include <Arduino.h>
class SoftTimer {
public:
SoftTimer(void);
SoftTimer(unsigned long);
void set(unsigned long);
void start(void);
void start(unsigned long);
boolean elapsed(void);
private:
unsigned long startTime=0;
unsigned long timeout=0;
};
#endif

View file

@ -1,75 +0,0 @@
#include "olr-controller.h"
enum {
DELTA_ANALOG = 5,
};
static float const ACEL = 0.2;
void controller_setup( void ) {
if( DIGITAL_MODE == false ){
pinMode(PIN_VCC_ADC1, OUTPUT);
pinMode(PIN_VCC_ADC2, OUTPUT);
digitalWrite(PIN_VCC_ADC1, HIGH);
digitalWrite(PIN_VCC_ADC2, HIGH);
}
pinMode( DIG_CONTROL_1, INPUT_PULLUP); //pull up in adc
pinMode( DIG_CONTROL_2, INPUT_PULLUP);
pinMode( DIG_CONTROL_3, INPUT_PULLUP);
pinMode( DIG_CONTROL_4, INPUT_PULLUP);
}
void controller_init( controller_t* ct, enum ctr_type mode, int pin ) {
ct->mode = mode;
ct->pin = pin;
ct->delta_analog = DELTA_ANALOG;
}
byte controller_getStatus( controller_t* ct ) {
if( ct->mode == DIGITAL_MODE ){
return digitalRead( ct->pin );
}
else if( ct->mode == ANALOG_MODE ){
ct->adc = analogRead( ct->pin );
if( abs( ct->badc - ct->adc ) > ct->delta_analog ){
ct->badc = ct->adc;
return 1;
}
ct->badc = ct->adc;
}
else if( ct->mode == DEBUG_MODE ){
ct->adc++;
if( ct->adc >= 60){
ct->adc = 0;
return 1;
}
}
return 0;
}
float controller_getSpeed( controller_t* ct) {
float speed = 0.0;
if ( (ct->flag_sw == 1 ) && (controller_getStatus( ct ) == 0) ) {
ct->flag_sw = 0;
speed = ACEL;
}
if ( (ct->flag_sw == 0 ) && (controller_getStatus( ct ) == 1 ) ) {
ct->flag_sw = 1;
}
return speed;
}
float controller_getAccel ( void ) {
return ACEL;
}
bool controller_isActive( int pin ) {
return !digitalRead( pin );
}

View file

@ -1,58 +0,0 @@
#ifndef _OLR_CONTROLLER_LIB_h
#define _OLR_CONTROLLER_LIB_h
#ifdef __cplusplus
extern "C"{
#endif
#include "Arduino.h"
#include <stdint.h>
#include <stdbool.h>
#define DIG_CONTROL_1 A2 // switch player 1 to PIN and GND
#define DIG_CONTROL_2 A0 // switch player 2 to PIN and GND
#define DIG_CONTROL_3 A3 // switch player 3 to PIN and GND
#define DIG_CONTROL_4 A1 // switch player 4 to PIN and GND
#define PIN_VCC_ADC1 6
#define PIN_VCC_ADC2 7
enum ctr_type{
NOT_DEFINED = 0,
DIGITAL_MODE,
ANALOG_MODE,
DEBUG_MODE,
};
typedef struct{
enum ctr_type mode;
int pin;
int adc;
int badc;
int delta_analog;
byte flag_sw;
}controller_t;
void controller_setup( void );
void controller_init( controller_t* ct, enum ctr_type mode, int pin );
byte controller_getStatus( controller_t* ct );
float controller_getSpeed( controller_t* ct );
float controller_getAccel ( void );
bool controller_isActive( int pin );
#ifdef __cplusplus
} // extern "C"
#endif
#endif

View file

@ -1,197 +0,0 @@
#include "Arduino.h"
#include "olr-lib.h"
//void process_main_track( track_t* tck, car_t* car );
//void process_aux_track( track_t* tck, car_t* car );
void car_init( car_t* car, controller_t* ct, uint32_t color ) {
car->ct = ct;
car->color = color;
car->trackID = TRACK_MAIN;
car->speed=0;
car->dist=0;
car->dist_aux=0;
}
void car_updateController( car_t* car ) {
car->speed += controller_getSpeed( car->ct );
}
void update_track( track_t* tck, car_t* car ) {
controller_t* ct = car->ct;
struct cfgtrack const* cfg = &tck->cfg.track;
if ( car->trackID == TRACK_MAIN
&& (int)car->dist % cfg->nled_main == (cfg->init_aux-(cfg->nled_aux))
// && controller_getStatus( ct ) == 0 ) { //change track by switch
&& (car->speed <= SPD_MIN_TRACK_AUX )) { //change track by low speed
car->trackID = TRACK_AUX;
car->dist_aux = 0;
}
else if( car->trackID == TRACK_AUX
&& car->dist_aux > cfg->nled_aux ) {
car->trackID = TRACK_MAIN;
car->dist += cfg->nled_aux;
}
/* Update car position in the current track */
if ( car->trackID == TRACK_AUX ) process_aux_track( tck, car );
else if ( car->trackID == TRACK_MAIN ) process_main_track( tck, car );
/* Update car lap */
if ( car->dist > ( cfg->nled_main*car->nlap -1) ) car->nlap++;
}
void process_aux_track( track_t* tck, car_t* car ){
struct cfgtrack const* cfg = &tck->cfg.track;
if ( (int)car->dist_aux == tck->ledcoin
&& car->speed <= controller_getAccel() ) {
car->speed = controller_getAccel ()*50;
tck->ledcoin = COIN_RESET;
};
car->speed -= car->speed * cfg->kf;
car->dist_aux += car->speed;
}
void process_main_track( track_t* tck, car_t* car ) {
struct cfgtrack const* cfg = &tck->cfg.track;
if ( tck->rampactive ) {
struct cfgramp const* r = &tck->cfg.ramp;
int const pos = (int)car->dist % cfg->nled_main;
if ( pos >= r->init && pos < r->center )
// car->speed -= cfg->kg * r->high * ( pos - r->init );
car->speed -= cfg->kg * r->high ;
if ( pos <= r->end && pos > r->center )
//car->speed += cfg->kg * r->high * ( pos - r->center );
car->speed += cfg->kg * r->high ;
}
car->speed -= car->speed * cfg->kf;
car->dist += car->speed;
}
void ramp_init( track_t* tck ) {
tck->rampactive = true;
}
bool ramp_isactive( track_t* tck ) {
return tck->rampactive;
}
void car_resetPosition( car_t* car) {
car->trackID = TRACK_MAIN;
car->speed = 0;
car->dist = 0;
car->dist_aux = 0;
car->nlap = 1;
car->leaving = false;
}
void box_init( track_t* tck ) {
tck->boxactive = true;
}
bool box_isactive( track_t* tck ) {
return tck->boxactive;
}
int tracklen_configure( track_t* tck, int nled ) {
struct cfgtrack* cfg = &tck->cfg.track;
if( nled <= 0 ) return -1;
cfg->nled_total = nled;
return 0;
}
int boxlen_configure( track_t* tck, int box_len, int boxalwaysOn ) {
struct cfgtrack* cfg = &tck->cfg.track;
if ( boxalwaysOn != 0 && boxalwaysOn != 1 ) return -1;
if( box_len <= 0 || box_len >= cfg->nled_total ) return -1;
cfg->box_len = box_len;
cfg->box_alwaysOn = boxalwaysOn;
// Update track->boxactive
tck->boxactive = boxalwaysOn;
return 0;
}
int physic_configure( track_t* tck, float kgp, float kfp ){
struct cfgtrack* cfg = &tck->cfg.track;
if( kgp <= 0.0 || kgp >= 2.0 ) return -1;
if( kfp <= 0.0 || kfp >= 2.0 ) return -1;
cfg->kf = kfp;
cfg->kg = kgp;
return(0);
}
int track_configure( track_t* tck, int init_box ) {
struct cfgtrack* cfg = &tck->cfg.track;
if(init_box >= cfg->nled_total ) return -1;
cfg->nled_main = ( init_box == 0 ) ? cfg->nled_total : init_box;
cfg->nled_aux = ( init_box == 0 ) ? 0 : cfg->nled_total - init_box;
cfg->init_aux = init_box - 1;
return 0;
}
int ramp_configure( track_t* tck, int init, int center, int end, int high, int alwaysOn ) {
struct cfgramp* ramp = &tck->cfg.ramp;
if ( init >= tck->cfg.track.nled_main || init <= 0 ) return -1;
if ( center >= tck->cfg.track.nled_main || center <= 0 ) return -2;
if ( end >= tck->cfg.track.nled_main || end <= 0 ) return -3;
if ( ! (center > init && center < end) ) return -4;
if ( alwaysOn != 0 && alwaysOn != 1 ) return -5;
ramp->init = init;
ramp->center = center;
ramp->end = end;
ramp->high = high;
ramp->alwaysOn = alwaysOn;
// Update track->rampactive
/**
boolean rampactive = &tck->rampactive;
rampactive = alwaysOn;
**/
tck->rampactive = alwaysOn;
return 0;
}
int race_configure( track_t* tck, int startline, int nlap, int nrepeat, int finishline ) {
struct cfgrace* race = &tck->cfg.race;
if ( startline != 0 && startline != 1 ) return -1;
if ( finishline != 0 && finishline != 1 ) return -1;
race->startline = startline;
race->finishline = finishline;
race->nlap = nlap;
race->nrepeat = nrepeat;
return 0;
}

View file

@ -1,103 +0,0 @@
#ifndef _OLR_LIB_h
#define _OLR_LIB_h
#ifdef __cplusplus
extern "C"{
#endif
#include <Arduino.h>
#include <stdint.h>
#include <stdbool.h>
#include "olr-controller.h"
#include "olr-param.h"
#define SPD_MIN_TRACK_AUX 0.8
enum stcoin{
COIN_RESET = -2,
COIN_WAIT = -1,
};
enum{
NOT_TRACK = 0,
TRACK_MAIN,
TRACK_AUX,
TRACK_IN,
TRACK_OUT,
NUM_TRACKS,
};
enum status{
CAR_WAITING = 0,
CAR_COMING,
CAR_ENTER,
CAR_RACING,
CAR_LEAVING,
CAR_GO_OUT,
CAR_FINISH
};
typedef struct{
controller_t* ct;
float speed;
float dist;
float dist_aux;
byte nlap;
byte repeats;
uint32_t color;
int trackID;
enum status st;
bool leaving;
}car_t;
typedef struct {
struct cfgparam cfg;
int ledcoin; //LED_SPEED_COIN
uint32_t ledtime;
bool rampactive;
bool boxactive;
}track_t;
void car_init( car_t* car, controller_t* ct, uint32_t color );
void car_updateController( car_t* car );
void car_resetPosition( car_t* car);
void update_track( track_t* tck, car_t* car );
void process_main_track( track_t* tck, car_t* car );
void process_aux_track( track_t* tck, car_t* car );
void box_init( track_t* tck );
bool box_isactive( track_t* tck );
int tracklen_configure( track_t* tck, int nled );
int boxlen_configure( track_t* tck, int box_len, int boxalwaysOn );
int physic_configure( track_t* tck, float kgp, float kfp );
int track_configure( track_t* tck, int init_box );
void ramp_init( track_t* tck );
bool ramp_isactive( track_t* tck );
int ramp_configure( track_t* tck, int init, int center, int end, int high, int alwaysOn );
int race_configure( track_t* tck, int startline, int nlap, int nrepeat, int finishline );
#ifdef __cplusplus
} // extern "C"
#endif
#endif

View file

@ -1,26 +0,0 @@
#include "olr-param.h"
void param_setdefault( struct cfgparam* cfg ) {
cfg->setted = true;
cfg->race.startline = true;
cfg->race.nlap = NUMLAP;
cfg->race.nrepeat = 1;
cfg->race.finishline = true;
cfg->ramp.init = 80;
cfg->ramp.center = 90;
cfg->ramp.end = 100;
cfg->ramp.high = 6;
cfg->ramp.alwaysOn = false;
cfg->track.nled_total = MAXLED;
cfg->track.nled_main = MAXLED; // 240 when boxes length = 60
cfg->track.nled_aux = 0; // 60
cfg->track.init_aux = -1; // 239
cfg->track.box_len = BOXLEN;
cfg->track.box_alwaysOn = false;
cfg->track.kf = 0.015; // friction constant
cfg->track.kg = 0.006; // gravity constant - Used in Slope
}

View file

@ -1,77 +0,0 @@
#ifndef _OLR_SERIAL_LIB_h
#define _OLR_SERIAL_LIB_h
#ifdef __cplusplus
extern "C"{
#endif
#include "Arduino.h"
#include <stdint.h>
#include <stdbool.h>
#define MAXLED 300
#define BOXLEN 60
#define NUMLAP 5
enum{
LEN_UID = 16,
CFG_VER = 5, // "5" in V0.9.6 (manage "permanent" param for Box and Slope)
};
struct cfgrace{
bool startline; // Used only in OLRNetwork
int nlap;
int nrepeat; // Used only in OLRNetwork
bool finishline; // Used only in OLRNetwork
};
//
struct cfgtrack {
int nled_total;
int nled_main;
int nled_aux;
int init_aux;
int box_len; // used to hold the Box Length if the default get changed.
// it's not possible to implicitly store it in nled_main,nled_aux
// because, if these are different to the default, box gets always activated
// (the software does not chek "box_isactive" to draw car position)
bool box_alwaysOn; // added in ver 0.9.6
float kf;
float kg;
};
// ramp centred in LED 100 with 10 led fordward and 10 backguard
struct cfgramp {
int init;
int center;
int end;
int high;
bool alwaysOn; // added in ver 0.9.6
};
struct brdinfo {
char uid[LEN_UID + 1];
};
struct cfgparam {
bool setted;
struct cfgrace race; // added in ver 0.9.d
struct cfgtrack track;
struct cfgramp ramp;
struct brdinfo info;
};
void param_setdefault( struct cfgparam* cfg );
#ifdef __cplusplus
} // extern "C"
#endif
#endif

View file

@ -1,945 +0,0 @@
/*
* ____ _ ______ _____ _____
/ __ \ | | | ____| __ \ | __ \
| | | |_ __ ___ _ __ | | | |__ | | | | | |__) |__ _ ___ ___
| | | | '_ \ / _ \ '_ \ | | | __| | | | | | _ // _` |/ __/ _ \
| |__| | |_) | __/ | | | | |____| |____| |__| | | | \ \ (_| | (_| __/
\____/| .__/ \___|_| |_| |______|______|_____/ |_| \_\__,_|\___\___|
| |
|_|
Open LED Race
An minimalist cars race for LED strip
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
First public version by:
Angel Maldonado (https://gitlab.com/angeljmc)
Gerardo Barbarov (gbarbarov AT singulardevices DOT com)
Basen on original idea and 2 players code by:
Gerardo Barbarov for Arduino day Seville 2019
https://github.com/gbarbarov/led-race
Public Repository for this code:
https://gitlab.com/open-led-race/olr-arduino
*/
// 2020/12/10 - Ver 0.9.6
// --see changelog.txt
char const softwareId[] = "A4P0"; // A4P -> A = Open LED Race, 4P0 = Game ID (4P = 4 Players, 0=Type 0)
char const version[] = "0.9.6";
#include <Adafruit_NeoPixel.h>
#include <EEPROM.h>
#include "olr-lib.h"
#include "olr-param.h"
#include "SoftTimer.h"
#include "SerialCommand.h"
#define PIN_LED 2 // R 500 ohms to DI pin for WS2812 and WS2813, for WS2813 BI pin of first LED to GND , CAP 1000 uF to VCC 5v/GND,power supplie 5V 2A
#define PIN_AUDIO 3 // through CAP 2uf to speaker 8 ohms
#define EOL '\n' // End of Command char used in Protocol
#define COLOR1 track.Color(255,0,0)
#define COLOR2 track.Color(0,255,0)
#define COLOR3 track.Color(0,0,255)
#define COLOR4 track.Color(255,255,255)
#define COLOR_RAMP track.Color(64,0,64)
#define COLOR_COIN track.Color(0,255,255)
#define COLOR_BOXMARKS track.Color(64,64,0)
#define LED_SEMAPHORE 12
#define CONTDOWN_PHASE_DURATION 2000
#define CONTDOWN_STARTSOUND_DURATION 40
#define NEWRACE_DELAY 5000
#define REC_COMMAND_BUFLEN 32 // Received command buffer length
enum{
MAX_CARS = 4,
};
enum loglevel { // used in Serial Protocol "!" command (send log/error messageS)
ECHO = 0,
DISABLE = 0,
LOG = 1,
WARNING = 2,
ERROR = 3
};
enum resp{
NOK = -1,
NOTHING = 0,
OK = 1
};
typedef struct ack{
enum resp rp;
char type;
}ack_t;
struct cfgcircuit{
int outtunnel;
};
enum phases{
IDLE = 0,
CONFIG,
CONFIG_OK,
READY,
COUNTDOWN,
RACING,
PAUSE,
RESUME,
COMPLETE,
RACE_PHASES
};
struct race{
struct cfgrace cfg;
struct cfgcircuit circ;
bool newcfg;
enum phases phase;
byte numcars;
int winner;
};
byte SMOTOR=0;
int TBEEP=0;
int FBEEP=0;
/*------------------------------------------------------*/
enum loglevel verbose = DISABLE;
static struct race race;
static car_t cars[ MAX_CARS ];
static controller_t switchs[ MAX_CARS ];
static track_t tck;
static int const eeadrInfo = 0;
char txbuff[64];
static unsigned long lastmillis = 0;
SoftTimer customDelay = SoftTimer(); // non blocking delay()
// Used to manage countdown phases
int countdown_phase=1;
bool countdown_new_phase=true;
int win_music[] = {
2637, 2637, 0, 2637,
0, 2093, 2637, 0,
3136
};
//int TBEEP=3;
char tracksID[ NUM_TRACKS ][2] ={"U","M","B","I","O"};
/* ----------- Function prototypes ------------------- */
void sendResponse( ack_t *ack);
//ack_t parseCommands(AsyncSerial &serial);
ack_t manageSerialCommand();
void printdebug( const char * msg, int errlevel );
void print_cars_positions( car_t* cars);
void run_racecycle( void );
void draw_winner( track_t* tck, uint32_t color);
char cmd[REC_COMMAND_BUFLEN]; // Stores command received by ReadSerialComand()
SerialCommand serialCommand = SerialCommand(cmd, REC_COMMAND_BUFLEN, EOL, &Serial); // get complete command from serial
Adafruit_NeoPixel track;
/*
*
*/
void setup() {
Serial.begin(115200);
randomSeed( analogRead(A6) + analogRead(A7) );
controller_setup( );
param_load( &tck.cfg );
track = Adafruit_NeoPixel( tck.cfg.track.nled_total, PIN_LED, NEO_GRB + NEO_KHZ800 );
controller_init( &switchs[0], DIGITAL_MODE, DIG_CONTROL_1 );
car_init( &cars[0], &switchs[0], COLOR1 );
controller_init( &switchs[1], DIGITAL_MODE, DIG_CONTROL_2 );
car_init( &cars[1], &switchs[1], COLOR2 );
race.numcars = 2;
if( controller_isActive( DIG_CONTROL_3 )) {
controller_init( &switchs[2], DIGITAL_MODE, DIG_CONTROL_3 );
car_init( &cars[2], &switchs[2], COLOR3 );
++race.numcars;
}
if( controller_isActive( DIG_CONTROL_4 )) {
controller_init( &switchs[3], DIGITAL_MODE, DIG_CONTROL_4 );
car_init( &cars[3], &switchs[3], COLOR4 );
++race.numcars;
}
track.begin();
strip_clear( &tck );
// Check Box before Physic/Sound to allow user to have Box and Physics with no sound
if(digitalRead(DIG_CONTROL_2)==0 || tck.cfg.track.box_alwaysOn ) { //push switch 2 on reset for activate boxes (pit lane)
box_init( &tck );
track_configure( &tck, tck.cfg.track.nled_total - tck.cfg.track.box_len );
draw_box_entrypoint( &tck );
} else{
track_configure( &tck, 0 );
}
if( digitalRead(DIG_CONTROL_1)==0 || tck.cfg.ramp.alwaysOn ) { //push switch 1 on reset for activate physics
ramp_init( &tck );
draw_ramp( &tck );
track.show();
delay(2000);
if ( digitalRead( DIG_CONTROL_1 ) == 0 ) { //retain push switch on reset for activate FX sound
SMOTOR=1;
tone(PIN_AUDIO,100);}
}
race.cfg.startline = tck.cfg.race.startline;// true;
race.cfg.nlap = tck.cfg.race.nlap;// NUMLAP;
race.cfg.nrepeat = tck.cfg.race.nrepeat;// 1;
race.cfg.finishline = tck.cfg.race.finishline;// true;
customDelay.start(0); // first race starts with no delay
race.phase = READY;
}
/*
*
*/
void loop() {
// look for commands received on serial
ack_t ack = manageSerialCommand();
if(ack.rp != NOTHING){
sendResponse(&ack);
}
// PLEASE NOTE:
// DO NOT call "track.show()" in the loop() while in configuration mode !!!
// It would mess up with Serial communication (receives only 2 bytes - if the
// string sent by the host is longer, it gets lost)
// In other phases (READY, RACING, etc) ONLY 2 bytes are guaranteed to be
// succesfully received - So "Enter Configuration Mode" command is just one byte (@)
if ( race.phase == CONFIG ) {
if( race.newcfg ) {
race.newcfg = false;
countdownReset();
customDelay.start(0);
race.phase = READY;
send_phase( race.phase );
}
}
else if ( race.phase == READY ) {
if(customDelay.elapsed()) {
for( int i = 0; i < race.numcars; ++i) {
car_resetPosition( &cars[i] );
cars[i].repeats = 0;
}
tck.ledcoin = COIN_RESET;
race.phase = COUNTDOWN;
send_phase( race.phase );
}
}
else if( race.phase == COUNTDOWN ) {
if( race.cfg.startline ){
// Countdown: semaphore and tones
if(start_race_done()) {
// Countdown done
for( int i = 0; i < race.numcars; ++i ) {
cars[i].st = CAR_ENTER;
}
race.phase = RACING;
send_phase( race.phase );
}
}
}
else if( race.phase == RACING ) {
strip_clear( &tck );
if( box_isactive( &tck ) ) {
if( tck.ledcoin == COIN_RESET ) {
tck.ledcoin = COIN_WAIT;
tck.ledtime = millis() + random(2000,7000);
}
if( tck.ledcoin > 0 )
draw_coin( &tck );
else if( millis() > tck.ledtime )
tck.ledcoin = random( 20, tck.cfg.track.nled_aux - 20 );
}
if( ramp_isactive( &tck ) )
draw_ramp( &tck );
if( box_isactive( &tck ) )
draw_box_entrypoint( &tck );
for( int i = 0; i < race.numcars; ++i ) {
run_racecycle( &cars[i], i );
if( cars[i].st == CAR_FINISH ) {
race.phase = COMPLETE;
race.winner = i;
send_phase( race.phase );
break;
}
}
track.show();
if (SMOTOR==1) tone(PIN_AUDIO,FBEEP+int(cars[0].speed*440*1)+int(cars[1].speed*440*2)+int(cars[2].speed*440*3)+int(cars[3].speed*440*4));
if (TBEEP>0) {TBEEP--;} else {FBEEP=0;};
/* Print p command!!! */
unsigned long nowmillis = millis();
if( abs( nowmillis - lastmillis ) > 100 ){
lastmillis = nowmillis;
print_cars_positions( cars );
}
/* ---------------- */
}
else if( race.phase == COMPLETE ) {
strip_clear( &tck );
track.show();
if ( race.cfg.finishline ){
draw_winner( &tck, cars[race.winner].color );
sound_winner( &tck, race.winner );
strip_clear( &tck );
}
track.show();
customDelay.start(NEWRACE_DELAY);
race.phase = READY;
}
}
void send_phase( int phase ) {
sprintf(txbuff, "R%d%c",phase,EOL);
serialCommand.sendCommand(txbuff);
}
void run_racecycle( car_t *car, int i ) {
struct cfgtrack const* cfg = &tck.cfg.track;
if( car->st == CAR_ENTER ) {
car_resetPosition( car );
if( car->repeats < race.cfg.nrepeat )
car->st = CAR_RACING;
else
car->st = CAR_GO_OUT;
}
if( car->st == CAR_RACING ) {
update_track( &tck, car );
car_updateController( car );
draw_car( &tck, car );
if( car->nlap == race.cfg.nlap
&& !car->leaving
&& car->dist > ( cfg->nled_main*car->nlap - race.circ.outtunnel ) ) {
car->leaving = true;
car->st = CAR_LEAVING;
}
if( car->nlap > race.cfg.nlap ) {
++car->repeats;
car->st = CAR_GO_OUT;
}
if( car->repeats >= race.cfg.nrepeat
&& race.cfg.finishline ) {
car->st = CAR_FINISH;
}
}
if ( car->st == CAR_FINISH ){
car->trackID = NOT_TRACK;
sprintf( txbuff, "w%d%c", i + 1, EOL );
serialCommand.sendCommand(txbuff);
car_resetPosition( car );
}
}
int get_relative_position( car_t* car ) {
enum{
MIN_RPOS = 0,
MAX_RPOS = 99,
};
struct cfgtrack const* cfg = &tck.cfg.track;
int trackdist = 0;
int pos = 0;
switch ( car->trackID ){
case TRACK_MAIN:
trackdist = (int)car->dist % cfg->nled_main;
pos = map(trackdist, 0, cfg->nled_main -1, MIN_RPOS, MAX_RPOS);
break;
case TRACK_AUX:
trackdist = (int)car->dist_aux;
pos = map(trackdist, 0, cfg->nled_aux -1, MIN_RPOS, MAX_RPOS);
break;
}
return pos;
}
void print_cars_positions( car_t* cars ) {
bool outallcar = true;
for( int i = 0; i < race.numcars; ++i)
outallcar &= cars[i].st == CAR_WAITING;
if ( outallcar ) return;
for( int i = 0; i < race.numcars; ++i ) {
int const rpos = get_relative_position( &cars[i] );
sprintf( txbuff, "p%d%s%d,%d%c", i + 1, tracksID[cars[i].trackID], cars[i].nlap, rpos, EOL );
serialCommand.sendCommand(txbuff);
}
}
/*
* non-blocking version
*/
boolean start_race_done( ) {
if(countdown_new_phase){
countdown_new_phase=false;
customDelay.start(CONTDOWN_PHASE_DURATION);
strip_clear( &tck );
if(ramp_isactive( &tck )) draw_ramp( &tck );
if(box_isactive( &tck )) draw_box_entrypoint( &tck );
switch(countdown_phase) {
case 1:
tone(PIN_AUDIO,400);
track.setPixelColor(LED_SEMAPHORE, track.Color(255,0,0));
break;
case 2:
tone(PIN_AUDIO,600);
track.setPixelColor(LED_SEMAPHORE, track.Color(0,0,0));
track.setPixelColor(LED_SEMAPHORE-1, track.Color(255,255,0));
break;
case 3:
tone(PIN_AUDIO,1200);
track.setPixelColor(LED_SEMAPHORE-1, track.Color(0,0,0));
track.setPixelColor(LED_SEMAPHORE-2, track.Color(0,255,0));
break;
case 4:
customDelay.start(CONTDOWN_STARTSOUND_DURATION);
tone(PIN_AUDIO,880);
track.setPixelColor(LED_SEMAPHORE-2, track.Color(0,0,0));
track.setPixelColor(0, track.Color(255,255,255));
break;
case 5:
noTone(PIN_AUDIO);
countdownReset(); // reset for next countdown
return(true);
}
track.show();
}
if(customDelay.elapsed()) {
noTone(PIN_AUDIO);
countdown_new_phase=true;
countdown_phase++;
}
return(false);
}
/*
*
*/
void countdownReset() {
countdown_phase=1;
countdown_new_phase=true;
}
void sound_winner( track_t* tck, int winner ) {
int const msize = sizeof(win_music) / sizeof(int);
for (int note = 0; note < msize; note++) {
tone(PIN_AUDIO, win_music[note],200);
delay(230);
noTone(PIN_AUDIO);
}
}
void strip_clear( track_t* tck ) {
struct cfgtrack const* cfg = &tck->cfg.track;
for( int i=0; i < cfg->nled_main; i++)
track.setPixelColor( i, track.Color(0,0,0) );
for( int i=0; i < cfg->nled_aux; i++)
track.setPixelColor( cfg->nled_main+i, track.Color(0,0,0) );
}
void draw_coin( track_t* tck ) {
struct cfgtrack const* cfg = &tck->cfg.track;
track.setPixelColor( 1 + cfg->nled_main + cfg->nled_aux - tck->ledcoin,COLOR_COIN );
}
void draw_winner( track_t* tck, uint32_t color) {
struct cfgtrack const* cfg = &tck->cfg.track;
for(int i=16; i < cfg->nled_main; i=i+(8 * cfg->nled_main / 300 )){
track.setPixelColor( i , color );
track.setPixelColor( i-16 ,0 );
track.show();
}
}
void draw_car( track_t* tck, car_t* car ) {
struct cfgtrack const* cfg = &tck->cfg.track;
switch ( car->trackID ){
case TRACK_MAIN:
for(int i=0; i<= car->nlap; ++i )
track.setPixelColor( ((word)car->dist % cfg->nled_main) + i, car->color );
break;
case TRACK_AUX:
for(int i=0; i<= car->nlap; ++i )
track.setPixelColor( (word)(cfg->nled_main + cfg->nled_aux - car->dist_aux) + i, car->color);
break;
}
}
/*
* Display on LED Strip current values for Slope and Pitlane
*
*/
void show_cfgpars_onstrip(){
strip_clear( &tck );
if( ramp_isactive( &tck ) )
draw_ramp( &tck );
if( box_isactive( &tck ) )
draw_box_entrypoint( &tck );
track.show();
}
/*
*
*/
void draw_ramp( track_t* _tck ) {
struct cfgramp const* r = &_tck->cfg.ramp;
byte dist = 0;
byte intensity = 0;
for( int i = r->init; i <= r->center; ++i ) {
dist = r->center - r->init;
intensity = ( 32 * (i - r->init) ) / dist;
track.setPixelColor( i, track.Color( intensity,0,intensity ) );
}
for( int i = r->center; i <= r->end; ++i ) {
dist = r->end - r->center;
intensity = ( 32 * ( r->end - i ) ) / dist;
track.setPixelColor( i, track.Color( intensity,0,intensity ) );
}
}
/*
*
*/
void draw_box_entrypoint( track_t* _tck ) {
struct cfgtrack const* cfg = &_tck->cfg.track;
int out = cfg->nled_total - cfg->box_len; // Pit lane exit (race start)
int in = out - cfg->box_len; // Pit lane Entrance
track.setPixelColor(in ,COLOR_BOXMARKS );
track.setPixelColor(out ,COLOR_BOXMARKS );
}
/*
* Check Serial to see if there is a command ready to be processed
*
*/
ack_t manageSerialCommand() {
ack_t ack = { .rp = NOTHING, .type = '\0' };
int clen = serialCommand.getCommand();
if(clen == 0) {
// No commands received
return ack;
} else if(clen < 0) {
// Error receiving command
sprintf( txbuff, "Error reading serial command:[%d]",clen);
printdebug( txbuff, WARNING );
}
// clen > 0 ---> Command with length=clen stored in cmd[].
ack.rp=NOK;
if( cmd[0] == '#' ) {
ack.type = cmd[0];
sprintf( txbuff, "#%c", EOL );
serialCommand.sendCommand(txbuff);
ack.rp = NOTHING;
}
else if( cmd[0] == '@' ) { // Enter "Configuration Mode" status
ack.type = cmd[0];
if(race.phase == CONFIG) { // Board already in "Configure Mode"
; // ignore command (will return @OK)
} else {
race.phase = CONFIG;
enter_configuration_mode();
}
ack.rp = OK;
}
else if( cmd[0] == '~' ) { // Exit "Configure Mode"
ack.type = cmd[0];
if(race.phase == CONFIG) {
race.newcfg = true;
} else { // Board NOT in configuration mode
; // ignore command (will return ~OK)
}
ack.rp = OK;
}
else if( cmd[0] == 'R' ) {
ack.type = cmd[0];
int const phase = atoi( cmd + 1);
if( 0 > phase || RACE_PHASES <= phase) return ack;
race.phase = (enum phases) phase;
ack.rp = OK;
if ( race.phase == CONFIG ) { // accept R1 as a EnterConfigurationMode command - DEPRECATED
enter_configuration_mode();
}
}
else if( cmd[0] == 'C' ) { //Parse race configuration -> C1,2,3,0
ack.type = cmd[0];
char * pch = strtok (cmd,"C");
if( !pch ) return ack;
pch = strtok (pch, "," );
if( !pch ) return ack;
int startline = atoi( pch );
pch = strtok (NULL, ",");
if( !pch ) return ack;
int nlap = atoi( pch );
pch = strtok (NULL, ",");
if( !pch ) return ack;
int nrepeat = atoi( pch );
pch = strtok (NULL, ",");
if( !pch ) return ack;
//cfg.finishline = atoi( pch );
int finishline = atoi( pch );
int err = race_configure( &tck, startline, nlap, nrepeat, finishline);
if( err ) return ack;
race.cfg.startline = tck.cfg.race.startline;
race.cfg.nlap = tck.cfg.race.nlap;
race.cfg.nrepeat = tck.cfg.race.nrepeat;
race.cfg.finishline = tck.cfg.race.finishline;
ack.rp = OK;
}
else if( cmd[0] == 'T' ) { //Parse Track configuration -> Track length
ack.type = cmd[0];
char * pch = strtok (cmd,"T");
if( !pch ) return ack;
int nled = atoi( cmd + 1 );
int err = tracklen_configure( &tck, nled);
if( err ) return ack;
track_configure( &tck, 0);
if( err ) return ack;
ack.rp = OK;
}
else if( cmd[0] == 'B' ) { //Parse BoxLenght Configuration -> Alen,perm
ack.type = cmd[0];
char * pch = strtok (cmd,"B");
if( !pch ) return ack;
pch = strtok (pch, "," );
if( !pch ) return ack;
int boxlen = atoi( pch );
pch = strtok (NULL, "," );
if( !pch ) return ack;
int boxperm = atoi( pch );
int err = boxlen_configure( &tck, boxlen, boxperm );
if( err ) return ack;
ack.rp = OK;
// Force Pitlane ON, so "show_cfgpars_onstrip()"
// will show the new values, even if AlwaysON=false
box_init(&tck);
show_cfgpars_onstrip();
}
else if( cmd[0] == 'A' ) { // Parse Ramp configuration -> Astart,center,end,high,perm
ack.type = cmd[0];
char * pch = strtok (cmd,"A");
if( !pch ) return ack;
pch = strtok (pch, "," );
if( !pch ) return ack;
int init = atoi( pch );
pch = strtok (NULL, "," );
if( !pch ) return ack;
int center = atoi( pch );
pch = strtok (NULL, "," );
if( !pch ) return ack;
int end = atoi( pch );
pch = strtok (NULL, ",");
if( !pch ) return ack;
int high = atoi( pch );
pch = strtok (NULL, ",");
if( !pch ) return ack;
int slopeperm = atoi( pch );
int err = ramp_configure( &tck, init, center, end, high, slopeperm );
if( err ) return ack;
ack.rp = OK;
// Force Ramp ON, so "show_cfgpars_onstrip()"
// will show the new values, even if AlwaysON=false
ramp_init(&tck);
show_cfgpars_onstrip();
}
else if( cmd[0] == 'K' ) { // Parse Physic simulation parameters
ack.type = cmd[0];
char * pch = strtok (cmd,"K");
if( !pch ) return ack;
pch = strtok (pch, "," );
if( !pch ) return ack;
float kgp = atof( pch );
pch = strtok (NULL, "," );
if( !pch ) return ack;
float kfp = atof( pch );
int err = physic_configure( &tck, kgp, kfp );
if( err ) return ack;
ack.rp = OK;
}
else if( cmd[0] == 'D') {
ack.type = cmd[0];
param_setdefault( &tck.cfg );
EEPROM.put( eeadrInfo, tck.cfg ); // Save immediately
printdebug( "Load default parameter values", LOG );
ack.rp = OK;
// Update box/slope active in current Track Struct with values
// just loaded (for show_cfgpars_onstrip())
struct cfgparam const* cfg = &tck.cfg;
tck.boxactive = cfg->track.box_alwaysOn;
tck.rampactive = cfg->ramp.alwaysOn;
show_cfgpars_onstrip();
}
else if( cmd[0] == ':' ) { // Set board Unique Id
struct brdinfo* info = &tck.cfg.info;
ack.type = cmd[0];
if( strlen(cmd + 1) > LEN_UID ) return ack;
strcpy( info->uid, cmd + 1 );
EEPROM.put( eeadrInfo, tck.cfg ); // Save immediately
ack.rp = OK;
}
else if( cmd[0] == '$' ) { // Get Board UID
sprintf( txbuff, "%s%s%c", "$", tck.cfg.info.uid, EOL );
serialCommand.sendCommand(txbuff);
ack.rp = NOTHING;
}
else if( cmd[0] == '?' ) { // Get Software Id
sprintf( txbuff, "%s%s%c", "?", softwareId, EOL );
serialCommand.sendCommand(txbuff);
ack.rp = NOTHING;
}
else if( cmd[0] == '%' ) { // Get Software Version
sprintf( txbuff, "%s%s%c", "%", version, EOL );
serialCommand.sendCommand(txbuff);
ack.rp = NOTHING;
}
else if( cmd[0] == 'Q' ) { // Get configuration Info
struct cfgparam const* cfg = &tck.cfg;
sprintf( txbuff, "%s:%d,%d,%d,%d,%d,%d,%d.%03d,%d.%03d%c", "QTRACK",
cfg->track.nled_total,
cfg->track.nled_main,
cfg->track.nled_aux,
cfg->track.init_aux,
cfg->track.box_len,
cfg->track.box_alwaysOn,
(int)cfg->track.kg, (int)(cfg->track.kg*1000)%1000, // std arduino sprintf() missing %f
(int)cfg->track.kf, (int)(cfg->track.kf*1000)%1000, // std arduino sprintf() missing %f
EOL );
serialCommand.sendCommand(txbuff);
sprintf( txbuff, "%s:%d,%d,%d,%d,%d%c", "QRAMP",
cfg->ramp.init,
cfg->ramp.center,
cfg->ramp.end,
cfg->ramp.high,
cfg->ramp.alwaysOn,
EOL );
serialCommand.sendCommand(txbuff);
sprintf( txbuff, "%s:%d,%d,%d,%d%c", "QRACE",
cfg->race.startline,
cfg->race.nlap,
cfg->race.nrepeat,
cfg->race.finishline,
EOL );
serialCommand.sendCommand(txbuff);
ack.rp = NOTHING;
}
else if( cmd[0] == 'W' ) { // Write configuration to EEPROM
ack.type = cmd[0];
EEPROM.put( eeadrInfo, tck.cfg );
ack.rp = OK;
}
return(ack);
}
/*
*
*/
void sendResponse( ack_t *ack) {
if(ack->type=='\0'){
sprintf(txbuff, "%s%c", ack->rp==OK? "OK":"NOK" , EOL );
} else {
sprintf(txbuff, "%c%s%c", ack->type, ack->rp==OK? "OK":"NOK" , EOL );
}
serialCommand.sendCommand(txbuff);
}
/*
* Send Log/Warning/Error messages to host
*/
void printdebug( const char * msg, int errlevel ) {
char tmp [80];
sprintf( tmp, "!%d,%s%c",errlevel, msg, EOL );
serialCommand.sendCommand(tmp);
}
/*
* reset race parameters
* stop sound
*/
void enter_configuration_mode(){
noTone(PIN_AUDIO);
strip_clear( &tck );
track.show();
}
void param_load( struct cfgparam* cfg ) {
int cfgversion;
int eeAdress = eeadrInfo;
EEPROM.get( eeAdress, tck.cfg );
eeAdress += sizeof( cfgparam );
EEPROM.get( eeAdress, cfgversion );
sprintf( txbuff, "%s:%d%c", "Parameters Loaded from EEPROM - Cfg ver", cfgversion, EOL );
//Serial.print(txbuff);
serialCommand.sendCommand(txbuff);
if ( cfgversion != CFG_VER ) {
param_setdefault( &tck.cfg );
eeAdress = 0;
EEPROM.put( eeAdress, tck.cfg );
eeAdress += sizeof( cfgparam );
EEPROM.put( eeAdress, CFG_VER );
sprintf( txbuff, "%s%c", "DEFAULT PAREMETRS LOADED (and Stored in EEPROM)", EOL );
serialCommand.sendCommand(txbuff);
}
}

View file

@ -1,75 +0,0 @@
#include "olr-controller.h"
enum {
DELTA_ANALOG = 5,
};
static float const ACEL = 0.2;
void controller_setup( void ) {
if( DIGITAL_MODE == false ){
pinMode(PIN_VCC_ADC1, OUTPUT);
pinMode(PIN_VCC_ADC2, OUTPUT);
digitalWrite(PIN_VCC_ADC1, HIGH);
digitalWrite(PIN_VCC_ADC2, HIGH);
}
pinMode( DIG_CONTROL_1, INPUT_PULLUP); //pull up in adc
pinMode( DIG_CONTROL_2, INPUT_PULLUP);
pinMode( DIG_CONTROL_3, INPUT_PULLUP);
pinMode( DIG_CONTROL_4, INPUT_PULLUP);
}
void controller_init( controller_t* ct, enum ctr_type mode, int pin ) {
ct->mode = mode;
ct->pin = pin;
ct->delta_analog = DELTA_ANALOG;
}
byte controller_getStatus( controller_t* ct ) {
if( ct->mode == DIGITAL_MODE ){
return digitalRead( ct->pin );
}
else if( ct->mode == ANALOG_MODE ){
ct->adc = analogRead( ct->pin );
if( abs( ct->badc - ct->adc ) > ct->delta_analog ){
ct->badc = ct->adc;
return 1;
}
ct->badc = ct->adc;
}
else if( ct->mode == DEBUG_MODE ){
ct->adc++;
if( ct->adc >= 60){
ct->adc = 0;
return 1;
}
}
return 0;
}
float controller_getSpeed( controller_t* ct) {
float speed = 0.0;
if ( (ct->flag_sw == 1 ) && (controller_getStatus( ct ) == 0) ) {
ct->flag_sw = 0;
speed = ACEL;
}
if ( (ct->flag_sw == 0 ) && (controller_getStatus( ct ) == 1 ) ) {
ct->flag_sw = 1;
}
return speed;
}
float controller_getAccel ( void ) {
return ACEL;
}
bool controller_isActive( int pin ) {
return !digitalRead( pin );
}

View file

@ -1,58 +0,0 @@
#ifndef _OLR_CONTROLLER_LIB_h
#define _OLR_CONTROLLER_LIB_h
#ifdef __cplusplus
extern "C"{
#endif
#include "Arduino.h"
#include <stdint.h>
#include <stdbool.h>
#define DIG_CONTROL_1 A2 // switch player 1 to PIN and GND
#define DIG_CONTROL_2 A0 // switch player 2 to PIN and GND
#define DIG_CONTROL_3 A3 // switch player 3 to PIN and GND
#define DIG_CONTROL_4 A1 // switch player 4 to PIN and GND
#define PIN_VCC_ADC1 6
#define PIN_VCC_ADC2 7
enum ctr_type{
NOT_DEFINED = 0,
DIGITAL_MODE,
ANALOG_MODE,
DEBUG_MODE,
};
typedef struct{
enum ctr_type mode;
int pin;
int adc;
int badc;
int delta_analog;
byte flag_sw;
}controller_t;
void controller_setup( void );
void controller_init( controller_t* ct, enum ctr_type mode, int pin );
byte controller_getStatus( controller_t* ct );
float controller_getSpeed( controller_t* ct );
float controller_getAccel ( void );
bool controller_isActive( int pin );
#ifdef __cplusplus
} // extern "C"
#endif
#endif

View file

@ -1,189 +0,0 @@
#include "Arduino.h"
#include "olr-lib.h"
void car_init( car_t* car, controller_t* ct, uint32_t color ) {
car->ct = ct;
car->color = color;
car->trackID = TRACK_MAIN;
car->speed=0;
car->dist=0;
car->dist_aux=0;
}
void car_updateController( car_t* car ) {
car->speed += controller_getSpeed( car->ct );
}
void update_track( track_t* tck, car_t* car ) {
controller_t* ct = car->ct;
struct cfgtrack const* cfg = &tck->cfg.track;
if ( car->trackID == TRACK_MAIN
&& (int)car->dist % cfg->nled_main == (cfg->init_aux-(cfg->nled_aux))
// && controller_getStatus( ct ) == 0 ) { //change track by switch
&& (car->speed <= SPD_MIN_TRACK_AUX )) { //change track by low speed
car->trackID = TRACK_AUX;
car->dist_aux = 0;
}
else if( car->trackID == TRACK_AUX
&& car->dist_aux > cfg->nled_aux ) {
car->trackID = TRACK_MAIN;
car->dist += cfg->nled_aux;
}
/* Update car position in the current track */
if ( car->trackID == TRACK_AUX ) process_aux_track( tck, car );
else if ( car->trackID == TRACK_MAIN ) process_main_track( tck, car );
/* Update car lap */
if ( car->dist > ( cfg->nled_main*car->nlap -1) ) car->nlap++;
}
void process_aux_track( track_t* tck, car_t* car ){
struct cfgtrack const* cfg = &tck->cfg.track;
if ( (int)car->dist_aux == tck->ledcoin
&& car->speed <= controller_getAccel() ) {
car->speed = controller_getAccel ()*50;
tck->ledcoin = COIN_RESET;
};
car->speed -= car->speed * cfg->kf;
car->dist_aux += car->speed;
}
void process_main_track( track_t* tck, car_t* car ) {
struct cfgtrack const* cfg = &tck->cfg.track;
if ( tck->rampactive ) {
struct cfgramp const* r = &tck->cfg.ramp;
int const pos = (int)car->dist % cfg->nled_main;
if ( pos >= r->init && pos < r->center )
// car->speed -= cfg->kg * r->high * ( pos - r->init );
car->speed -= cfg->kg * r->high ;
if ( pos <= r->end && pos > r->center )
//car->speed += cfg->kg * r->high * ( pos - r->center );
car->speed += cfg->kg * r->high ;
}
car->speed -= car->speed * cfg->kf;
car->dist += car->speed;
}
void ramp_init( track_t* tck ) {
tck->rampactive = true;
}
bool ramp_isactive( track_t* tck ) {
return tck->rampactive;
}
void car_resetPosition( car_t* car) {
car->trackID = TRACK_MAIN;
car->speed = 0;
car->dist = 0;
car->dist_aux = 0;
car->nlap = 1;
car->leaving = false;
}
void box_init( track_t* tck ) {
tck->boxactive = true;
}
bool box_isactive( track_t* tck ) {
return tck->boxactive;
}
int tracklen_configure( track_t* tck, int nled ) {
struct cfgtrack* cfg = &tck->cfg.track;
if( nled <= 0 ) return -1;
cfg->nled_total = nled;
return 0;
}
int boxlen_configure( track_t* tck, int box_len, int boxalwaysOn ) {
struct cfgtrack* cfg = &tck->cfg.track;
if ( boxalwaysOn != 0 && boxalwaysOn != 1 ) return -1;
if( box_len <= 0 || box_len >= cfg->nled_total ) return -1;
cfg->box_len = box_len;
cfg->box_alwaysOn = boxalwaysOn;
// Update track->boxactive
tck->boxactive = boxalwaysOn;
return 0;
}
int physic_configure( track_t* tck, float kgp, float kfp ){
struct cfgtrack* cfg = &tck->cfg.track;
if( kgp <= 0.0 || kgp >= 2.0 ) return -1;
if( kfp <= 0.0 || kfp >= 2.0 ) return -1;
cfg->kf = kfp;
cfg->kg = kgp;
return(0);
}
int track_configure( track_t* tck, int init_box ) {
struct cfgtrack* cfg = &tck->cfg.track;
if(init_box >= cfg->nled_total ) return -1;
cfg->nled_main = ( init_box == 0 ) ? cfg->nled_total : init_box;
cfg->nled_aux = ( init_box == 0 ) ? 0 : cfg->nled_total - init_box;
cfg->init_aux = init_box - 1;
return 0;
}
int ramp_configure( track_t* tck, int init, int center, int end, int high, int alwaysOn ) {
struct cfgramp* ramp = &tck->cfg.ramp;
if ( init >= tck->cfg.track.nled_main || init <= 0 ) return -1;
if ( center >= tck->cfg.track.nled_main || center <= 0 ) return -2;
if ( end >= tck->cfg.track.nled_main || end <= 0 ) return -3;
if ( ! (center > init && center < end) ) return -4;
if ( alwaysOn != 0 && alwaysOn != 1 ) return -5;
ramp->init = init;
ramp->center = center;
ramp->end = end;
ramp->high = high;
ramp->alwaysOn = alwaysOn;
// Update track->rampactive
/**
boolean rampactive = &tck->rampactive;
rampactive = alwaysOn;
**/
tck->rampactive = alwaysOn;
return 0;
}
int race_configure( track_t* tck, int startline, int nlap, int nrepeat, int finishline ) {
struct cfgrace* race = &tck->cfg.race;
if ( startline != 0 && startline != 1 ) return -1;
if ( finishline != 0 && finishline != 1 ) return -1;
race->startline = startline;
race->finishline = finishline;
race->nlap = nlap;
race->nrepeat = nrepeat;
return 0;
}

View file

@ -1,103 +0,0 @@
#ifndef _OLR_LIB_h
#define _OLR_LIB_h
#ifdef __cplusplus
extern "C"{
#endif
#include <Arduino.h>
#include <stdint.h>
#include <stdbool.h>
#include "olr-controller.h"
#include "olr-param.h"
#define SPD_MIN_TRACK_AUX 0.8
enum stcoin{
COIN_RESET = -2,
COIN_WAIT = -1,
};
enum{
NOT_TRACK = 0,
TRACK_MAIN,
TRACK_AUX,
TRACK_IN,
TRACK_OUT,
NUM_TRACKS,
};
enum status{
CAR_WAITING = 0,
CAR_COMING,
CAR_ENTER,
CAR_RACING,
CAR_LEAVING,
CAR_GO_OUT,
CAR_FINISH
};
typedef struct{
controller_t* ct;
float speed;
float dist;
float dist_aux;
byte nlap;
byte repeats;
uint32_t color;
int trackID;
enum status st;
bool leaving;
}car_t;
typedef struct {
struct cfgparam cfg;
int ledcoin; //LED_SPEED_COIN
uint32_t ledtime;
bool rampactive;
bool boxactive;
}track_t;
void car_init( car_t* car, controller_t* ct, uint32_t color );
void car_updateController( car_t* car );
void car_resetPosition( car_t* car);
void update_track( track_t* tck, car_t* car );
void process_main_track( track_t* tck, car_t* car );
void process_aux_track( track_t* tck, car_t* car );
void box_init( track_t* tck );
bool box_isactive( track_t* tck );
int tracklen_configure( track_t* tck, int nled );
int boxlen_configure( track_t* tck, int box_len, int boxalwaysOn );
int physic_configure( track_t* tck, float kgp, float kfp );
int track_configure( track_t* tck, int init_box );
void ramp_init( track_t* tck );
bool ramp_isactive( track_t* tck );
int ramp_configure( track_t* tck, int init, int center, int end, int high, int alwaysOn );
int race_configure( track_t* tck, int startline, int nlap, int nrepeat, int finishline );
#ifdef __cplusplus
} // extern "C"
#endif
#endif

View file

@ -1,26 +0,0 @@
#include "olr-param.h"
void param_setdefault( struct cfgparam* cfg ) {
cfg->setted = true;
cfg->race.startline = true;
cfg->race.nlap = NUMLAP;
cfg->race.nrepeat = 1;
cfg->race.finishline = true;
cfg->ramp.init = 80;
cfg->ramp.center = 90;
cfg->ramp.end = 100;
cfg->ramp.high = 6;
cfg->ramp.alwaysOn = false;
cfg->track.nled_total = MAXLED;
cfg->track.nled_main = MAXLED; // 240 when boxes length = 60
cfg->track.nled_aux = 0; // 60
cfg->track.init_aux = -1; // 239
cfg->track.box_len = BOXLEN;
cfg->track.box_alwaysOn = false;
cfg->track.kf = 0.015; // friction constant
cfg->track.kg = 0.006; // gravity constant - Used in Slope
}

View file

@ -1,77 +0,0 @@
#ifndef _OLR_PARAM_LIB_h
#define _OLR_PARAM_LIB_h
#ifdef __cplusplus
extern "C"{
#endif
#include "Arduino.h"
#include <stdint.h>
#include <stdbool.h>
#define MAXLED 300
#define BOXLEN 60
#define NUMLAP 5
enum{
LEN_UID = 16,
CFG_VER = 5, // "5" in V0.9.6 (manage "permanent" param for Box and Slope)
};
struct cfgrace{
bool startline; // Used only in OLRNetwork
int nlap;
int nrepeat; // Used only in OLRNetwork
bool finishline; // Used only in OLRNetwork
};
//
struct cfgtrack {
int nled_total;
int nled_main;
int nled_aux;
int init_aux;
int box_len; // used to hold the Box Length if the default get changed.
// it's not possible to implicitly store it in nled_main,nled_aux
// because, if these are different to the default, box gets always activated
// (the software does not chek "box_isactive" to draw car position)
bool box_alwaysOn; // added in ver 0.9.6
float kf;
float kg;
};
// ramp centred in LED 100 with 10 led fordward and 10 backguard
struct cfgramp {
int init;
int center;
int end;
int high;
bool alwaysOn; // added in ver 0.9.6
};
struct brdinfo {
char uid[LEN_UID + 1];
};
struct cfgparam {
bool setted;
struct cfgrace race; // added in ver 0.9.d
struct cfgtrack track;
struct cfgramp ramp;
struct brdinfo info;
};
void param_setdefault( struct cfgparam* cfg );
#ifdef __cplusplus
} // extern "C"
#endif
#endif

File diff suppressed because it is too large Load diff